
www.manaraa.com

Pham et al. BioDataMining  (2017) 10:15 
DOI 10.1186/s13040-017-0136-6

METHODOLOGY Open Access

Study of Meta-analysis strategies for
network inference using information-theoretic
approaches
Ngoc C. Pham1* , Benjamin Haibe-Kains2,3,4,5, Pau Bellot6, Gianluca Bontempi7 and Patrick E. Meyer1

*Correspondence:
camngoc.pham@doct.ulg.ac.be
1Bioinformatics and Systems
Biology (BioSys) Lab, Université de
Liège, Liège, Belgium
Full list of author information is
available at the end of the article

Abstract

Background: Reverse engineeringof gene regulatory networks (GRNs) from gene
expression data is a classical challenge in systems biology. Thanks to high-throughput
technologies, a massive amount of gene-expression data has been accumulated in the
public repositories. Modelling GRNs from multiple experiments (also called integrative
analysis) has; therefore, naturally become a standard procedure in modern
computational biology. Indeed, such analysis is usually more robust than the traditional
approaches, which suffer from experimental biases and the low number of samples by
analysing individual datasets.
To date, there are mainly two strategies for the problem of interest: the first one (“data
merging”) merges all datasets together and then infers a GRN whereas the other
(“networks ensemble”) infers GRNs from every dataset separately and then aggregates
them using some ensemble rules (such as ranksum or weightsum). Unfortunately, a
thorough comparison of these two approaches is lacking.

Results: In this work, we are going to present another meta-analysis approach for
inferring GRNs from multiple studies. Our proposed meta-analysis approach, adapted
to methods based on pairwise measures such as correlation or mutual information,
consists of two steps: aggregating matrices of the pairwise measures from every
dataset followed by extracting the network from the meta-matrix. Afterwards, we
evaluate the performance of the two commonly used approaches mentioned above
and our presented approach with a systematic set of experiments based on in silico
benchmarks.

Conclusions: We proposed a first systematic evaluation of different strategies for
reverse engineering GRNs from multiple datasets. Experiment results strongly suggest
that assembling matrices of pairwise dependencies is a better strategy for network
inference than the two commonly used ones.

Keywords: Meta-analysis, Gene regulatory networks, Systems biology, Gene
expression, Mutual information
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Background
One of the most long-standing challenges in Systems Biology is the development of meth-
ods, which are able to construct the complete set of regulatory interactions of a cell.
The regulating circuitry, also called gene regulatory network (GRN), can then be used by
bio-medical experts to understand key mechanisms in cells. Thanks to high-throughput
technologies, a large amount of transcriptome data is now available through public
repositories (e.g. NCBI GEO [1], ArrayExpress [2]), providing opportunities to study the
GRNs of many organisms.
In the last decade, a variety of algorithms have been proposed in an attempt to

address this reverse engineering problem. These algorithms can be classified into several
categories [3], such as: regression-based, pairwise similarity (mutual information, corre-
lation,...), Bayesian networks or even ensemble approaches (that combine several different
approaches). Among those, mutual information (MI) based algorithms, such as CLR [4],
ARACNE [5], MRNET [6, 7] and so on, gather more and more attention owing to their
capability to deal with up to several thousands of variables in the presence of a limited
number of samples [7]. Generally, MI-based algorithms start by estimating a pairwise
mutual information (i.e. a non-linear dependency measure) between all pairs of genes,
resulting in a mutual information matrix (MIM). Afterwards, indirect interactions are
eliminated from theMIMby the different approaches and subsequently a GRN is inferred.
Since a single dataset has typically a small sample size (usually less than 200 obser-

vations) and suffers from potential experimental biases, classical reverse engineering
algorithms, which relies only on a standalone dataset, show their limits in unravelling reli-
ably underlying interactions. By contrast, integrative analysis of multiple studies is able
to increase significantly the statistical power and thus is becoming a standard procedure
in modern computational biology [8]. Nevertheless, the question of how to integrate data
consistently and efficiently raises new challenges [9].
In the mean time, meta-analysis strategies have been increasingly used for detecting

differentially expressed genes frommicroarray data [10]. In themeta-analysis approaches,
each single dataset is analysed separately and then the final results are combined [11].
Several strategies have been proposed in order to perform meta-analysis on expression
data. For instance, a meta-analysis of public gene expression data and clinical data was
conducted by using the concept of “coexpression” modules to reveal various results of
previous gene expression studies in breast cancer [12, 13]. In another research [14], Hong
et al. developed a Bioconductor package RankProd that allow researchers to do meta-
analysis under two experimental microarray conditions to identify differentially expressed
genes.
While the problem of detecting differentially expressed genes across several studies has

been intensively studied, it is, however, not yet the case when it comes to constructing
GRNs.
To deal with the challenge of meta-network inference, there have been plenty of pro-

posed methods, which can be divided into two main categories: “data merging” and
“network ensemble”. In the “data merging” approach, datasets are integrated at the expres-
sion level into a unique dataset, from which GRNs are inferred [15–17]. However, one
of the major problem of this approach is the removal of batch effects. Indeed, the use of
different platforms, and different methodologies by different research groups introduce
statistical biases (batch effects) that can lead to incorrect conclusions [18]. For example,
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it is known that normalization techniques, such as RMA [19], consisting in re-scaling
gene expression values at the probe intensity level for Affymetrix data [20], is not able
to remove batch effects. Consequently, batch removal methods, like COMBAT [21], is
typically used before merging data [18].
On the other hand, “ensemble” methods of merging GRNs from different datasets, i.e.

by weighting gene-gene interactions according to their average rank in each network [3],
have emerged as an alternative to the “data merging” approach. This approach rooted in
the “wisdoms of crowds” concept, which was first introduced in the DREAM5 challenge
and then further developed by [22] with the TopkNet algorithms to produce consensus
networks.
In this paper, we also introduce a new meta-analysis strategy to build consensus net-

works. The new strategy consists in aggregating matrices of pairwise mutual information
with each being estimated from a gene expression dataset to produce a meta-matrix, from
which a GRN is inferred using classical information-theoretic network inference algo-
rithms. Additionally, the paper presents the first thorough experimental comparison of
these three “meta” approaches for the reconstruction of networks, namely “data merg-
ing”, “network ensemble” and “coexpression matrices aggregation”. The performances of
these three sets of methods are evaluated using synthetic datasets from the standard
Bioconductor netbenchmark package.

Methods
State-of-the-art

Mutual information is a non-linear measure of dependency between two variables (genes)
X and Y, defined as follow

I(X,Y ) =
∑

x⊂X,y⊂Y
p(x, y)log

p(x, y)
p(x)p(y)

(1)

where p(x, y) is the joint probability distribution of X and Y, and p(x) and p(y) are the
marginal probability distributions of X and Y, respectively.
This dependency measure has been used for reconstructing networks by several meth-

ods such as CLR, ARACNE or MRNET. The first one - CLR method (The Context
Likelihood or Relatedness network) [4] creates an edge between each pair of genes i
and j if the combined z-score of the mutual information between them is above a given
threshold, where the combined z-score is defined as:

cij =
√
c2i + c2j with ci = max(0,

Mij − μMi

σMi
) (2)

in which, μMi and σMi are the mean and standard deviation of the empirical distribution
of the mutual information of gene i.
The second algorithm named ARACNE (The Algorithm for the Reconstruction of

Accurate Cellular Networks) [5] relies on the “Data Processing Inequality” (DPI) which
removes the edge with the weakest mutual information, in every triplet of genes.
And finally, the Minimum Redundancy NETworks (MRNET) [6, 7] method recon-

structs a network using the feature selection technique known as Minimum Redundancy
Maximum Relevance (MRMR) [23]. The minimum redundancy criterion makes the
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implicit assumption that variables with redundant information to the most relevant
variables are indirect links.
Using these three information-theoretic network inference techniques, which are avail-

able from the Bioconductor Minet package, we will evaluate the performance of the three
meta-analysis approaches that were demonstrated in Fig. 1 in the next sections.

Data merging - Dmethods

A straightforward approach for performing integrative analysis of multiple studies is com-
bining all datasets together and then analysing the merged dataset. These method, named
“datamerging” and denoted here with the letter (D), were widely used in [15–17] to recon-
struct large-scale GRNs because of their simplicity. However, since high dimensional data
often suffers from unwanted biases, a variety of techniques can be used to correct for

Fig. 1 Meta-network strategies: assembling datasets, pairwise matrices or networks
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these non-biological variations. We present in the following two classical scaling methods
typically used to assemble datasets, and one batch-effect-removal method.

Normalization: BMC(D1) and z-score (D2)

Let X be a matrix Xm×n denoting the dataset of gene expression values. In this matrix,
columns represent samples and rows represent genes, and xij represents the expression
value of gene i in sample j of dataset X. In [24], a normalization technique named BMC
(Eq. 3) was applied for merging breast cancer datasets.

x̂ij = xij − x̄i (3)

Similarly, the z-score normalization [25] is described by Eq. 4 and was also included for
evaluation.

x̂ij = xij − x̄i
σxi

(4)

Batch effects removal: COMBAT(D3)

Gene expression datasets mostly come from different platforms and laboratories, causing
the so-called batch effects. Consequently, batch removal methods, like COMBAT (also
known as Empirical Bayes) [21], is often used to detect and remove this inevitable vari-
ation. COMBAT, which was shown to outperform other commonly used batch removal
methods in some specific scenarios [26], uses estimations for the LS (location-scale)
parameters (e.x. mean and variance) for each gene independently [27]. The gene, after-
wards, is adjusted to meet the estimated model. In this paper, combining datasets using
the COMBAT algorithm will be included for comparison and referred as method D3.

Networks ensemble - Nmethods

As we presented in the previous subsection, one of the difficulties of the data-merging
methods is how to handle the batch effects. Consequently, “networks ensemble” method
(denoted with the letter (N) in the paper) has been proposed as an alternative approach. In
fact, by combining topologies of networks rather than datasets we are able to avoid deal-
ing with batch effects. This method first constructs every single transcriptional networks
independently before combining them to produce a so-called community network [3].
In general, combining networks consists in two distinct steps: transformation and aggre-
gation [28]. Indeed, before assembling networks, a network-normalization step can be
performed because it is common to observe networks that exhibit different distribution
of edge weights.
Let eij be the weight of an edge between gene i and gene j and tn(eij) be the nor-

malized value for eij in the network n. In the next subsections, we discuss three viable
combinations of network transformation and aggregation.

RankSummethod (N1)

The RanSum method, which was introduced in [3], is based on rank averaging: If eij
denotes an edge connecting genes i and j and rn(eij) the rank of the edge in network n, the
final rank of the edge across N networks is computed by:

r(eij) =
N∑

n=1
rn(eij) (5)
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Internal quality control index (N2)

In [10], six quantitative quality control measures have been proposed for the inclu-
sion/exclusion of gene expression studies used for the meta-analysis. Among these
measures, the internal quality control index will be included in this paper, as method N2
for assembling networks. Let the similarity between two studiesm and n be defined as

rmn = spcor((tn(eij); 1 ≤ i ≤ j ≤ G), (tm(eij); 1 ≤ i ≤ j ≤ G)) (6)

In which rmn is the Spearman’s rank correlation of the pairwise correlation structure
between study m and n and G represents the total number of genes in the studies. The
dissimilarity (or distance) between study m and n is defined as dmn = (1 − rmn)/2. For a
given study k, a weight -wk will be granted as the fraction between the sum of distances
between study k - D∗

k to all other studies and the sum of pairwise distances between all
studies excluding the study k - D#

k with

D∗
k = {dkn}1≤n≤N ;n�=k and D#

k = {dmn}1≤m �=n≤N ;m �=k;n�=k (7)

Afterwards, the weight of the edge between two variables (genes) X and Y is aggregated
by the following equation:

êIQC(X;Y ) =

N∑
k=1

wktk(eXY )

N∑
k=1

wk

(8)

Medianmethod (N3)

In [22] the median value was introduced for aggregating consensus networks. This
method assigns the median value among N values representing the confidence score of a
specific edge in N different networks.

aM(eij) = median{t1(eij), . . . , tN (eij)} (9)

Matrices of coexpression based aggregation approaches - Mmethods

Our new category of meta-analysis approaches (denoted with the letter (M) in this paper)
aggregates mutual information matrices rather than data or networks. The idea behind
assembling pairwise matrices is that, although expression data typically shows high
variability due to differences in technology, samples, labels, etc., pairwise dependency
measures between genes should be much less variant (i.e. dependent variables, such as a
regulating variable and its regulated counterpart, should remain dependent in every plat-
form/experiment/dataset even if ranges of values differ greatly). Thus, to infer a network
from various expression data, our approach consists in combining mutual information
matrices (MIMs) estimated independently from each dataset. Then a GRN network is
inferred from the aggregated MIMs. In the following subsections, we will demonstrate
three feasible methods to assemble matrices of pairwise measure.

Random-effects model (M1)

It should be noted that the problem of combining MIMs across multiple datasets can
be framed in the context of a meta-analysis of correlation coefficients [29]. Hunter and
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Schmidt [30] introduced a single random-effects method based on untransformed corre-
lation coefficients, at which datasets are weighted simply by the sample sizes on which
each effect size (the estimated MIM) is based. Our first weighting schema (method
M1), described by Eq. 10, utilises this random-effects method, but using MI instead of
correlations.

ÎRE(X;Y ) =

N∑
k=1

nkI(Xk ;Yk)

N∑
k=1

nk
(10)

where I(Xk ;Yk) is the MI between two variable Xk and Yk in the study k and nk is the
number of samples of study k.
The idea is simply that effect sizes based on large samples will be more precise than

those based on small samples.

Internal quality control index (M2)

Here, the internal quality control index measure was used again with some minor
modifications. First, the similarity between two studiesm and n was defined as

rmn = spcor((Imij; 1 ≤ i ≤ j ≤ G), (Inij; 1 ≤ i ≤ j ≤ G)) (11)

Then, the MI between two variables (genes) X and Y is aggregated by the following
equation:

ÎIQC(X;Y ) =

N∑
k=1

wkI(Xk ;Yk)

N∑
k=1

wk

(12)

Medianmethod (M3)

One of the major issue of M1 is that the quality of datasets used in meta-analysis is
not explicitly taken into account. Indeed, inclusion of poor quality datasets is likely to
weaken statistical power [10]. Thus, an alternative schema for combining MIMs across
heterogeneous studies namely method M3 can be proposed. Method M3 is explained by
formula 13, in which the aggregated MI of a gene pair X and Y is the median value of all
MI values between them across all studies.

ÎM(X,Y ) = median(I(X1,Y1), I(X2,Y2), . . . I(XN ,YN )) (13)

Results
Simulated datasets

There are two tasks one needs to consider in order to validate networks: 1) defining a
“gold standard” - which is a set of true regulations describing the underlying interaction
network, 2) selecting quantitative measures to statistically assess the quality of inferred
networks. Typically, the first task is addressed by collecting well-known regulationsmined
from literature with strong supporting evidences. However, those regulations just cover a
small part of the underlying network and therefore cannot be an ideal reference network
to thoroughly comparemethods. Hence the latter approach is often completed by in-silico
experiments.
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In this paper, in silico benchmarks are selected from every one of the 4 biological
networks and artificially generated datasets coming from the Netbenchmark Biocon-
ductor package [31]. The selected datasets are generated by two simulators namely
GNW and SynTReN. The GNW simulator generates network structures by extract-
ing parts of known real GRN structures capturing several of their important structural
properties while the SynTReN simulator generates the underlying networks by selecting
sub-networks from E. coli and Yeast organisms [31]. The characteristics of the 4 biological
networks are presented in more detail in Table 1.
In the following step, each large dataset will be split into 6 sub-datasets with a number of

experiments ranging between 30 to 300 (a number chosen randomly in order to simulate
real case scenario where there is a variety of the number of samples). For example, in
Fig. 2, an original dataset is split into 6 sub-datasets with the following number of samples:
50, 100, 150, 120, 70 and 190. Additionally, two extremely noisy studies are added, both
with a large sample size for each (between 280 and 300). Those datasets allow to test the
sensitivity of meta-networkmethods to datasets that should typically be excluded. Indeed,
a few biological studies dating back to the beginning of the microarray technology have
very little information and are typically excluded from meta-analysis studies.

Network prediction and validation for simulated datasets

In order to make the network inference problemmore challenging and realistic, noise and
transformations of data are added. In particular, we define three levels of data-distortion:

i ) Level 1: An independent lognormal noise call “global” noise, with intensity between
20 and 50%, is added to the first 6 datasets. The standard deviation of this noise
(σGlobal) is the same for the whole dataset and is a percentage (κg%) of the mean
variance of all the genes in the dataset(σ̄g). It is defined as follows:
σGlobal;κg% = σ̄g

U(0.8κ ,1.2κ)
100 .

ii ) Level 2: In addition to the global noise, a normally distributed “local” noise with
intensity also ranging between 20 and 50%, is added. This is an additive Gaussian
noise with zero mean and a standard deviation (σLocal(g)) that is around a
percentage (κ%) of the gene standard deviation (σg). Therefore, the
Signal-to-Noise-Ratio(SNR) of each gene is similar. The local noise standard
deviation can be formulated as follows: σLocal(g);κ% = σg

U(0.8κ ,1.2κ)
100 where U(a, b) is

a uniform distribution between a and b.
iii ) Level 3: In addition to the two previous noises, each sub-dataset can be transformed

using a randomly chosen non-linear transformation such as x2 or log(x). This
random data transformation is not really meant to be realistic but rather to allow
us to better assess the behaviour of each meta-method when faced with extreme
distortion. It is worth emphasizing that the two non-informative studies remain
unchanged across all experiments. A flowchart of this process is illustrated in Fig. 2.

Table 1 Networks used in the paper

Network Name Topology Experiments Genes Edges

SynTreN300 S1 E. coli 800 300 468

SynTreN1000 S2 E. coli 1000 1000 4695

GNW1565 G1 E. coli 1565 1565 7264

GNW2000 G2 Yeast 2000 2000 10392
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Fig. 2 Framework for data collection, network prediction and validation

The schema for network prediction and validation is also illustrated in Fig. 2. Initially, all
methods (three D, M and N, totalling nine) are used to construct a consensus GRN from
the split datasets. All methods are assessed on 12 challenges (three levels of distortion for
four datasets). Finally, the process is repeated for the three information-theoretic infer-
ence methods, hence totalling 36 challenges. This is done to make sure that our analysis
is not method specific.
Given the ground-truth knowledge of the simulated data, traditional statistical error

measures, such as F-score, AUCROC (Area Under the Receiver Operating Characteris-
tic curve) or AUPR (Area Under the Precision-Recall curve) can be used to verify the
quality of networks at the global-level [32]. ROC curves, however, can present an overly
optimistic view of an algorithm’s performance if there is a large skew in the class dis-
tribution [33], which is generally the case in network inference because of its spareness.
Consequently, PR curves, which are often used in information retrieval, have been recom-
mended as an alternative to ROC curves [33]. The AUPR for each GRN is, thus, selected
to report for all methods in each challenge of the study. Due to the randomization of
various experimental parameters (noise intensity, number of samples), 10 repetitions are
made. Finally, the average of the ten AUPR values, for each method on each challenge, is
presented. Furthermore, in order to see how significantly better is the best method, a p-
value using aWilcoxon test [34] and adjusted, using a Bonferroni correction [35], between
each approach and the best one is computed.

Experimental results

In this section, we present the experimental results of all presented methods for recon-
structing GRNs frommultiple expression datasets (Table 2). For the D family of methods,
it can be observed that normalization using z-score transformation (D2) is better than
BMC (D1). This conclusion is true for all three network inference algorithms used in this
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Table 2 Area under PR-Curves (the higher the better) for 9 methods on 4 datasets with 3 levels of
increasing data-distortion

MRNET D1 D2 D3 N1 N2 N3 M1 M2 M3

S1 Level 1 0.082 0.116 0.107 0.052 0.138 0.124 0.141 0.137 0.121

Level 2 0.078 0.110 0.101 0.051 0.119 0.116 0.120 0.117 0.102

Level 3 0.088 0.099 0.096 0.050 0.116 0.114 0.120 0.112 0.105

S2 Level 1 0.013 0.016 0.016 0.023 0.034 0.026 0.046 0.043 0.026

Level 2 0.013 0.016 0.016 0.024 0.023 0.021 0.026 0.025 0.019

Level 3 0.014 0.016 0.016 0.024 0.024 0.021 0.027 0.025 0.020

G1 Level 1 0.051 0.099 0.122 0.051 0.125 0.129 0.156 0.142 0.131

Level 2 0.037 0.087 0.108 0.049 0.108 0.115 0.138 0.122 0.116

Level 3 0.039 0.077 0.101 0.048 0.104 0.113 0.133 0.115 0.111

G2 Level 1 0.028 0.050 0.073 0.029 0.106 0.097 0.131 0.126 0.097

Level 2 0.023 0.046 0.066 0.028 0.089 0.084 0.116 0.111 0.085

Level 3 0.029 0.044 0.066 0.028 0.088 0.085 0.113 0.111 0.087

Mean 0.041 0.065 0.074 0.038 0.090 0.087 0.106 0.099 0.085

p-value .00195 .00195 .00195 .00195 .00195 .00195 .00195 .00195

ARACNE

S1 Level 1 0.032 0.043 0.042 0.045 0.101 0.030 0.063 0.055 0.051

Level 2 0.034 0.042 0.040 0.036 0.080 0.022 0.045 0.046 0.039

Level 3 0.038 0.039 0.038 0.038 0.083 0.023 0.049 0.049 0.047

S2 Level 1 0.005 0.005 0.006 0.017 0.020 0.006 0.025 0.022 0.013

Level 2 0.005 0.005 0.005 0.015 0.015 0.005 0.014 0.013 0.009

Level 3 0.005 0.005 0.005 0.015 0.015 0.005 0.013 0.012 0.008

G1 Level 1 0.030 0.061 0.083 0.126 0.119 0.075 0.131 0.116 0.102

Level 2 0.022 0.054 0.071 0.102 0.092 0.056 0.105 0.090 0.087

Level 3 0.025 0.047 0.068 0.105 0.096 0.058 0.109 0.096 0.086

G2 Level 1 0.013 0.028 0.048 0.096 0.095 0.052 0.124 0.116 0.090

Level 2 0.010 0.023 0.036 0.068 0.065 0.032 0.081 0.075 0.061

Level 3 0.011 0.018 0.035 0.070 0.070 0.034 0.087 0.084 0.058

Mean 0.019 0.031 0.040 0.061 0.071 0.033 0.070 0.064 0.054

p-value .00195 .00195 .00195 .00977 1.0 .00195 .00586 .00195

CLR

S1 Level 1 0.116 0.138 0.136 0.051 0.134 0.130 0.137 0.135 0.136

Level 2 0.122 0.140 0.138 0.051 0.135 0.132 0.138 0.137 0.136

Level 3 0.123 0.131 0.133 0.049 0.135 0.131 0.138 0.137 0.136

S2 Level 1 0.034 0.042 0.043 0.024 0.042 0.040 0.043 0.042 0.042

Level 2 0.032 0.042 0.043 0.025 0.041 0.039 0.043 0.042 0.042

Level 3 0.035 0.041 0.042 0.024 0.042 0.039 0.043 0.043 0.042

G1 Level 1 0.062 0.136 0.147 0.047 0.129 0.112 0.147 0.138 0.145

Level 2 0.067 0.135 0.145 0.046 0.126 0.106 0.142 0.126 0.138

Level 3 0.065 0.111 0.132 0.046 0.119 0.104 0.135 0.124 0.134

G2 Level 1 0.042 0.081 0.095 0.026 0.090 0.078 0.105 0.100 0.104

Level 2 0.041 0.078 0.091 0.026 0.083 0.072 0.097 0.095 0.095

Level 3 0.042 0.066 0.084 0.026 0.081 0.069 0.094 0.091 0.093

Mean 0.065 0.095 0.102 0.037 0.096 0.088 0.105 0.101 0.103

p-value .00195 .00195 .06446 .00195 .00195 .00195 .00195 .00195
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paper, namely MRNET, ARACNE and CLR. Another striking feature is that batch effect
removal methods like COMBAT (D3) is able to increase significantly the robustness of
network inference algorithms. The results reinforce the idea that normalization alone can
not remove batch effects, and therefore the removal of batch effects is essential when
merging datasets. In the case of method N, N2 and N3 outperform N1 when MRNET or
CLR used. However, in the case of using ARACNE, N1 is as good as N2 while poor results
are observed for N3.
Interestingly, we can clearly observe that N2 outperforms all three D methods suggest-

ing that assembling networks is better than merging datasets. This could be explained by
the fact that gene expression values are very dissimilar in various experiments due to our
simulated batch effects (i.e. datasets with different global and local noise). However, the
particular combination CLR - D3 offers an exception to this observation. It also should
be noted that assembling mutual information matrices (M methods) surpasses the two
other well-known strategies (D and N) for all datasets under every different levels of dis-
tortion, in particular for MRNET (see Figs. 3 and 4) and CLR. Experimental results also
show that MRNET benefits the most frommeta-analysis and CLR appears to be the most
robust. This suggests that while CLR might be a better strategy for analysing individual
datasets, MRNETmight be a better choice whenmultiple datasets are available. Although
ARACNE appears to be much worse than the two other techniques, that is mainly due to
a bad recall (though not visible with AUPR numbers, its precision remains quite compet-
itive). Finally, in the M family of methods, it appears that combining MIM using random
effect model (M1) is better than the two other strategies, the internal quality control index
(M2) and the median method (M3).

Conclusion
In the present paper, we proposed a framework for evaluating the different strategies for
inferring GRNs from multiple expression datasets. To the best of our knowledge, this
is the first systematic evaluation of the two state-of-the-art strategies for the problem
of interest, namely “data merging” and “networks ensemble”. Furthermore, we presented
a new, but promising approach for methods based on coexpression matrices. Indeed,
our set of experiments strongly suggest that assembling matrices of pairwise depen-
dencies is a better strategy for network inference than the two commonly used ones.
However, there exists many different methods of data and network assembly, as well as
experimental conditions that have still to be tested in order to gain a complete under-
standing of the problem of meta-network inference. Moreover, as mentioned earlier, a

Fig. 3 PR-Curves of method D3, N1, N3 and M1 on dataset S1 at level 1 of data distortion
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Fig. 4 Boxplots for presented methods using MRNET

large amount of under-exploited transcriptome data of model organisms is now available
through public repositories. Thus, additionally to testing new ensemble methods, future
works include the use of the best strategy to reconstruct large-scale GRNs of these model
organisms.
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